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A simple, time-dependent model is proposed to predict the heat and salt fluxes trans-
ferred between a hot, salty fluid layer and an overlying colder, fresher fluid layer when
the overall density of the lower layer is greater than that of the upper layer. The inter-
face separating the two layers, known as a ‘diffusive’ interface, consists of a purely
diffusing core sandwiched between vigorously convecting boundary layers. This type
of interface occurs whenever the density of superposed fluid layers depends on
two diffusing agents with different diffusivities such that the faster diffusing agent
causes a statically unstable density variation while the slower diffusing agent causes a
statically stable variation. Early experimental and theoretical studies sought a single
relationship between the heat flux FT across a diffusive interface and the buoyancy
ratio Rρ = β�S/α�T , where �T and �S are the differences in temperature and
salinity between the well-mixed fluid layers, while α and β are the coefficients of
thermal and solutal expansion respectively. The model presented here supports more
recent experimental findings that the relationship is time-dependent and therefore that
results depend on the initial conditions and any forcing applied to the mixed regions.
It is predicted that the evolution of the thickness of the core is determined principally
by the mismatch between the transport rates of the slower-diffusing species (salt)
diffusively from the core and convectively into the mixed regions. The introduction of
time-dependence brings together the data from many previous experimental studies
for both heat–salt and salt–sugar systems over a wide range of Rρ , and both links
and puts into context two previous theories of diffusive interfaces.

1. Introduction
When two agents with different molecular diffusivities, such as heat and salt,

simultaneously contribute to the density of a fluid, convective motions can ensue
even when the overall density field is statically stable (Turner 1974, 1979; Huppert &
Turner 1981; Linden 2000). Here we are concerned with systems in which the faster-
diffusing agent drives the convection, typified by the case of a warm, salty layer of
water overlain by a cooler, less salty layer. It is characteristic of such systems that
well-mixed layers form, separated by narrow ‘diffusive’ interfaces. These occur in the
oceans (see the review by Schmitt 1994), for example where cold, Arctic water diluted
by the spring melting of sea ice meets warmer, saltier water from the Atlantic; during
replenishment of some magma chambers (Huppert 1986); and industrially in solar
ponds (Newell & Boehm 1982). Of interest and concern in all these systems is the
determination of the fluxes of heat and salt between the superposed layers.
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Throughout this paper, I shall use the example of heat and salt in general discus-
sions, though comparisons will also be made with salt–sugar systems, in which salt is
the faster-diffusing agent and therefore plays the role of heat.

Turner (1965, 1979) used dimensional analysis to reason that the steady heat flux
transferred across a diffusive interface FT = k(αg/κν)1/3�T 4/3F (Rρ, τ, σ ), where k is
the thermal conductivity of the fluid, α its thermal expansion coefficient, κ its thermal
diffusivity, ν its kinematic viscosity, g the acceleration due to gravity and �T the
temperature difference between the two layers. The dimensionless function F (Rρ, τ, σ )
depends on the buoyancy ratio Rρ = β�S/α�T , where β�S is the fractional change
in density caused by the salinity difference �S between the layers, the diffusivity ratio
τ = D/κ , where D is the diffusivity of salt, and the Prandtl number σ = ν/κ . Therefore,
for a given physical system, for which τ and σ are constants, a single functional
relationship between FT /[k(αg/κν)1/3�T 4/3] and Rρ has been sought. Broadly speak-
ing, there has been some support for this idea from laboratory experiments (Turner
1965; Shirtcliffe 1973; Marmorino & Caldwell 1976; Stamp et al. 1998) at low to
moderate values of Rρ (between Rρ = 1 and Rρ = 10 approximately for the heat–salt
system, for example). However, Newell (1984) has shown experimentally that, at
higher values of Rρ , the fluxes can depend significantly on initial conditions and the
history of the system.

It is difficult to maintain constant the value of Rρ during an experiment, which
would entail maintaining the temperature and salinity of the two fluid layers constant
even as heat and salt is transferred between them. All experiments to date have been
transient but it has generally been supposed that the systems evolved through a series
of quasi-steady states. With this in mind, Linden & Shirtcliffe (1978) proposed a
theory in which heat and salt are diffused across a stable core region between the two
layers and are carried away by convective elements that periodically break away from
the edge of the core. Their model, which extended ideas proposed by Howard (1964)
for high-Rayleigh-number, single-component convection from a heated horizontal
plate, makes a prediction for F (Rρ, τ, σ ) given steady conditions.

A feature of the model developed by Linden & Shirtcliffe (1978) is that it has no
solution (there is no steady state) when Rρ > τ−1/2. Their model centres on the idea
of a cyclical process in which the boundary layers separating the diffusive core from
the well-mixed layers grow by diffusion until a local Rayleigh number is exceeded,
then erupt, restoring the layers to their initial state. Linden & Shirtcliffe suggest that
at larger values of Rρ the cyclical eruption cannot return the layers to their initial
state and note that there must then be a build-up of heat and salt at the edges of the
diffusive core which cannot be removed by convection.

The model proposed in the present paper has the same structure as that developed
by Linden & Shirtcliffe but takes account of the time-dependent balance of fluxes
across the boundary layers, diffusively from the core and convectively into the mixed
layers. The thickness of the core region thus evolves in time. The model predicts
the same steady states found by Linden & Shirtcliffe but also finds that F (Rρ, τ, σ )
depends on the rate of evolution towards the steady state relative to the rate at which
the mixed layers evolve in transient experiments. Specifically, that F is time-dependent.

Newell (1984) performed experiments with heat and salt (for which τ−1/2 ≈ 10) for
values of Rρ ranging up to 30. He noted that the core grew at a rate commensurate
with the rate of solutal diffusion and proposed a simple model in which salt transport
is unaffected by any convective motions. He estimated the thickness of the core region
as h =

√
πDt , where t is time, based on the salinity gradient in the middle of a purely

diffusing core, and estimated the heat flux by a linear temperature gradient across the
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core. These estimations gave good qualitative agreement for the shape of F (Rρ, τ, σ ) at
large values of Rρ , though the predicted values were a little high compared with his
experimental results. The model proposed here confirms the physical balances adopted
by Newell in the high-Rρ regime, but the detailed evolution is found to be different.

The model is described in § 2 and various asymptotic solutions are obtained in § 3
for an ideal system with initial conditions corresponding to two superposed uniform
layers separated by a sharp interface. These conditions are most closely approximated
in experiments (Shirtcliffe 1973; Stamp et al. 1998) using aqueous solutions of salt
and sugar. Comparisons between the model predictions and the results of these
experiments are made in § 4. Experiments using heat and salt as the diffusing agents
have generally involved externally imposed heating of the lower layer or cooling of
the upper layer in addition to natural heat transfer across the diffusive interface
between the layers. For example, in his experiments, Turner (1965) started with an
isothermal system with a salty layer below a less salty layer and proceeded to heat
the lower layer. The time-dependent model developed here suggests that the heat flux
across the diffusive interface during such ‘run-up’ experiments evolves differently than
when the system runs down naturally towards an isothermal state. Comparisons with
Turner’s experimental results and with the run-down experiments using heat and salt
of Newell (1984) are made later in § 4.

2. Formulation of the model
The model proposed consists of a horizontal core layer of fluid, across which heat

and salt are transported by diffusion alone, sandwiched between two mixed layers
driven by thermal convection from boundary layers at the edges of the core. The
thickness of the core evolves in time in response to the mismatch between the diffusive
fluxes across the core and the convective fluxes into the mixed layers. The uniform
temperatures and salinities of the mixed layers are allowed to vary in time, while the
diffusive profiles of temperature and salinity in the core vary in both space and time.

Consider a rectangular container half-filled with warm, salty water underlying a
layer of cooler, fresher water (figure 1). The upper layer initially occupies the region
0 < z < H and has temperature T0 and salinity S0. Owing to the assumed symmetry of
the system, the (intermediate or interfacial) temperature Ti and salinity Si at the mid-
plane z = 0 remain constant in time. For simplicity, we assume that all the physical
parameters of the fluid are constant, independent of temperature and salinity.

We assume that there are two well-mixed layers, one above and one below a
diffusive core of thickness 2h(t), where t is time. The upper mixed layer, occupying
h(t) < z < H , has temperature T (t) and salinity S(t). We wish to determine the fluxes
of heat and salt between the two mixed layers, i.e. the evolution of T and S, as well
as the thickness and structure of the diffusive core.

Within the diffusive core we shall use the symbols T (z, t) and S(z, t) to denote the
local temperature and salinity. These satisfy the diffusion equations

∂T

∂t
= κ

∂2T

∂z2
and

∂S

∂t
= D

∂2S

∂z2
, (2.1a, b)

with

T = Ti, S = Si (z = 0), (2.2)

T = Th(t), S = Sh(t) (z = h(t)), (2.3)

where Th(t), Sh(t) and h(t) are to be determined.
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Figure 1. Schematic diagram of a two-layer, double-diffusive system with a cold, relatively
fresh layer overlying a warmer saltier layer. The curves show the contributions ρ(T ) and ρ(S)
to the density field made by the temperature T and salinity S fields respectively, and the total
density field ρ.

The temperature of the upper mixed layer evolves according to

ρcp(H − h)
dT

dt
= FT , (2.4)

where ρ is the fluid density, cp is its specific heat capacity and FT is the convective
heat flux across the boundary layer separating the diffusive core from the well-mixed
layer. In common with Linden & Shirtcliffe (1978), we assume that the boundary layer
is narrow compared with the depths of both the diffusive core and the mixed layer
and that therefore the heat flux FT is independent of these depths. Dimensional
analysis alone, similar to that used for high-Rayleigh-number convection from a
heated, horizontal plane (Turner 1979; Linden 2000), then shows that

FT = λ(τ )k
(αg

κν

)1/3

(Th − T )4/3, (2.5)

where k = ρcpκ and Th − T ≡ δT /2 is the temperature jump across the boundary
layer.† The heat flux is affected additionally by the salinity difference across the
boundary layer but by assumption (see (2.10) below) the salinity difference is linearly
related to the temperature difference and the parameterization (2.5) is retained. The
parameter λ(τ ) cannot be determined from dimensional analysis but must either be
determined empirically or from a local model of the convective process characterizing
the boundary layer. For example, Linden & Shirtcliffe (1978), following ideas proposed
by Howard (1964) for convection from a heated, horizontal plate, considered the
cyclic growth by diffusion and decay by convective eruption of the boundary layer to

† More recent ideas on high-Rayleigh-number convection (e.g. Castaing et al. 1989) leading to a
9
7

power law between heat flux and temperature jump could be incorporated here but would not
significantly alter the experimental predictions made in this paper.
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determine

λ(τ ) = 24/3 λ
SP

π1/3

(
1 − τ 1/2

)
, (2.6)

where λSP = (1/Rc)
1/3, and Rc is the critical value of the Rayleigh number at which

the boundary layer breaks down, taken to be Rc = 1629, so that λSP = 0.085. The
value of λ(τ ) given by (2.6) will be used in § 3, where comparisons with the model of
Linden & Shirtcliffe (1978) are made, but λ(τ ) will be treated as an empirical constant
(the sole adjustable parameter used to fit experimental data) in later sections, where
comparisons with experiments are made.

The salinity of the upper mixed layer evolves according to

(H − h)
dS

dt
= FS, (2.7)

where FS is the convective salt flux across the boundary layer. Scaling arguments
based on the idea that salt is diffused into the thermal, convective elements before
they break away from the boundary layer suggest that the buoyancy flux ratio

βFS/αFT = τ 1/2. (2.8)

This expression is confirmed by the local model of Linden & Shirtcliffe (1978) and
is supported well by laboratory experiments using heat and salt when Rρ is greater
than about 2 (Turner 1965) and by laboratory experiments using salt and sugar for
all values of τ (Shirtcliffe 1973). Turner (1965) found that the buoyancy flux ratio
increased approximately linearly from τ 1/2 to unity as the buoyancy ratio Rρ decreased
from Rρ = 2 to Rρ = 1. This increase may have been a consequence of the fact that
Turner was heating the lower layer, with the diffusive interface being disrupted by
convective elements rising from the heated lower boundary. This will be discussed
further in § 4. For now, expression (2.8) will be used universally, so that

FS =
α

β
τ 1/2λ(τ )κ

(αg

κν

)1/3

(Th − T )4/3. (2.9)

The unknown functions Th(t), Sh(t) and h(t) are determined from conditions applied
at the interface between the diffusive and convecting layers z = h(t). The first condition
follows from an assumption that the density field is continuous. Equivalently, it can
be assumed that convective elements breaking away from the interface remove all
and only the fluid that is less dense than that in the mixed layer above (Linden &
Shirtcliffe 1978). These considerations give the condition

α[Th(t) − T (t)] = β[Sh(t) − S(t)]. (2.10)

Two more conditions, expressing conservation of heat and salt at the interface, can
be written as

(Th − T )ḣ = −κ
∂T

∂z

∣∣∣∣
h

− FT

ρcp

, (2.11)

(Sh − S)ḣ = −D
∂S

∂z

∣∣∣∣
h

− FS, (2.12)

where (·) denotes differentiation with respect to time. These last two equations repre-
sent the principal difference between the present model and that of Linden & Shirtcliffe
(1978). As we shall see below, their steady-state results are recovered by setting the
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left-hand sides of these equations to zero and adopting steady (linear) temperature
and salinity profiles in the diffusive core.

The system of equations and boundary conditions (2.1)–(2.12) is made dimensionless
by scaling lengths with Ra−1/3H and time with Ra−2/3H 2/κ , where

Ra =
αg�T H 3

2κν
, (2.13)

and by writing

θ =
T − Ti

Ti − T0

, φ =
S − Si

Si − S0

. (2.14a, b)

Note that Ra is the initial Rayleigh number characteristic of the upper layer, which
has height H and a temperature contrast of �T/2 = Ti − T0.

With these scalings, the equations, boundary and initial conditions become

∂θ

∂t
=

∂2θ

∂z2
,

∂φ

∂t
= τ

∂2φ

∂z2
(0 � z � h(t)), (2.15a, b)

θ = φ = 0 (z = 0), θ = θh, φ = φh (z = h), (2.16a–d)

(
Ra1/3 − h

)dθ

dt
= λ(θh − θ)4/3 (z > h), (2.17)

(
Ra1/3 − h

)dφ

dt
=

τ 1/2

Rρ

λ(θh − θ)4/3 (z > h), (2.18)

θ = φ = −1 (t = 0), (2.19a, b)

(θh − θ)ḣ = −∂θ

∂z

∣∣∣∣
h

− λ(θh − θ)4/3, (2.20)

(φh − φ)ḣ = −τ
∂φ

∂z

∣∣∣∣
h

− τ 1/2

Rρ

λ(θh − θ)4/3, (2.21)

(θh − θ) = Rρ(φh − φ). (2.22)

Equations (2.20) and (2.21) can be combined to give

(
1 − τ 1/2

)
(θh − θ)ḣ = −Rρτ

∂φ

∂z

∣∣∣∣
h

+ τ 1/2 ∂θ

∂z

∣∣∣∣
h

, (2.23)

(
1 − τ 1/2

)
λ(θh − θ)4/3 = Rρτ

∂φ

∂z

∣∣∣∣
h

− ∂θ

∂z

∣∣∣∣
h

. (2.24)

Note, from (2.23), that −Rρφz � −τ−1/2θz > −θz, at least when ḣ > 0, so the diffusive
layer is always statically stable.

3. Theoretical results
3.1. Numerical solutions

Equations (2.15)–(2.19) with (2.22)–(2.24) describe a Stefan problem for the interface
position h(t). The diffusion equations (2.15) were solved numerically using a two-step,
second-order, implicit method (Ames 1977) having first mapped the computational
domain [0, h] linearly onto [0, 1]. Simultaneously, the ordinary differential equations
(2.17), (2.18) and (2.23) were solved using a second-order, Runge–Kutta method, while
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Figure 2. The solid curves show the evolutionary paths predicted by the present model with
τ = 0.01 and Ra= 1010: 1, starting from an ideal two-layer system with no core and R∗

ρ = 2;
2, starting with a core of thickness 0.01Ra1/3 and R∗

ρ =2; 3, starting with a core of thickness
0.01Ra1/3 and R∗

ρ = 4. The long-dashed curve (L&S) is the theoretical steady state for fixed Rρ

(Linden & Shirtcliffe 1978). The dot-dashed curve (N) is the prediction of the model developed
by Newell (1984), while the short-dashed curve (3.22) is the result of the approximate large-time
analysis given by equation (3.22). The arrows show the direction in which time is evolving.

the nonlinear equation (2.24) was solved for θh using a hybrid secant/binary-search
method.

Figure 2 shows three calculated evolutionary paths of F ∗
T versus R∗

ρ , with τ = 0.01

and Ra =1010, where

F ∗
T =

FT

F SP
T

, (3.1)

and

F SP
T = λSP k

(αg

κν

)1/3

�T 4/3 (3.2)

is the heat flux predicted to occur across a fictitious solid conducting plate placed
at the mid-plane z =0, while R∗

ρ ≡ Rρφ/θ is the effective buoyancy ratio between
the mixed layers. For reference, the steady-state solution determined by Linden &
Shirtcliffe (1978) is shown with a dashed curve. But note that steady states only exist
if the properties of the mixed layers are maintained (achieved by letting Ra → ∞ in
the scaled equations (2.17) and (2.18)).

The first path, the solid curve labelled 1, corresponds to ideal initial conditions
with h(0) = 0 and R∗

ρ = Rρ = 2. We see that the solution decays rapidly towards the
steady-state curve then evolves in a quasi-steady fashion until about R∗

ρ = 4. The
path subsequently peels away from the steady-state curve: the dimensionless heat
flux continues to decay slowly, R∗

ρ increases and the core thickens as time progresses.
Figure 3 shows the dimensionless thickness of the core region as it evolves in time.
Initially the core grows by solute diffusion proportional to t1/2. The growth is arrested
by the vigorous convection and is maintained at an almost constant value as the
system evolves quasi-steadily. However, as Rρ approaches and then exceeds τ−1/2 the
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Figure 3. The evolution of the core thickness h with time t corresponding to the curve
labelled 1 in figure 2. The dashed line has a slope of 0.5.

core thickens rapidly at first but ultimately slows to a rate a little faster than t1/2.
This structure is elucidated further below.

The second path, the solid curve labelled 2, corresponds to initial conditions with
h(0) = 0.01Ra1/3 (a core thickness of 2 mm in a tank 20 cm high, say), linear tempera-
ture and salinity profiles through the core and R∗

ρ = Rρ = 2. This mimics the imperfect
initial states caused by mixing during set-up of typical laboratory experiments in which
the upper layer is floated onto the lower. We see that the scaled heat flux initially
increases rapidly towards the steady-state curve, then crosses it and decays, following
the first case closely. The initial sharpening up of the core and the corresponding
increase in the vigour of convection is reported in many experimental studies.

The third path, the solid curve labelled 3, corresponds to initial conditions similar
to the second case but with R∗

ρ =Rρ = 4. In this case, there is no period during which
the evolution is quasi-steady. The increase and subsequent decay of the scaled heat
flux is found experimentally, for example by Newell (1984, his figure 5).

The approximate large-time, large-R∗
ρ predictions made by Newell (1984) and in this

paper are shown in figure 2 by the dot-dashed and short-dashed curves respectively
and are discussed in detail in the end of this section.

The physical mechanisms underlying the characteristics of these solutions can be
described as follows. Heat is diffused across the core and into thermal boundary layers
at the edge of the core. The thermal boundary layers, which are beyond the stabilizing
influence of the salt field, are unstable and give rise to convective elements that break
away into the mixed layers. The boundary layers are not explicitly resolved in the
mathematical model but are represented by the temperature discontinuities between
the core and the mixed layers. Salt is simultaneously diffused across the core, into
the thermal boundary layers and is carried away by the thermal convective elements.
But whereas salt diffuses independently of heat through the core, the rate at which
it is transported into the mixed layers is dictated by the thermal convection. If the
diffusive transport of salt exceeds the rate of its removal to the mixed layers then salt
builds up at the edge of the core, stabilizing more of the thermal field, and thus the
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core thickens. Conversely, when the core is initially too thick the diffusive salt flux is
relatively low compared with the convective flux and the core thins.

The controlling mechanisms are further elucidated by examining the mathematical
structure of the solutions in various asymptotic limits as follows. The remainder of
this section is not essential to understanding the relationship between the model
predictions and experimental results described in § 4.

3.2. Behaviour at early times

Initially, in the ideal situation, the conductive terms dominate the convective terms
on the right-hand sides of equations (2.20) and (2.21), θ = φ = −1 in the mixed layer,
and a similarity solution exists in the diffusive layer such that

θ = θh

erf

(
z

2
√

t

)

erf

(
h

2
√

t

) , φ = φh

erf

(
z

2
√

τ t

)

erf

(
h

2
√

τ t

) . (3.3)

Substitution of these expressions into equations (2.23) and (2.24), noting that the
left-hand side of (2.24) is negligible at early times, gives

(
1 − τ 1/2

)
(1 + θh) = −Rρφh

G(η)
+

τ 1/2θh

G
(
τ 1/2η

) , (3.4)

0 =
Rρφh

G(η)
− θh

G
(
τ 1/2η

) , (3.5)

where η = h/2
√

τ t is a constant and

G(x) ≡
√

πxex2

erf(x). (3.6)

Equations (3.4) and (3.5) can be rearranged, using (2.22), to give

δθ =
1

1 + G
(
τ 1/2η

) with
1 + G(η)

1 + G
(
τ 1/2η

) = Rρ, (3.7a, b)

where δθ ≡ θh − θ = Rρ(1 + φh) is the scaled temperature jump at the interface between
the core and the mixed layer. Note that G is a positive, monontonically increasing
function and that the left-hand side of (3.7b) increases monotonically from 1 to
infinity as η increases from zero. Therefore δθ < 1 and (3.7b) always has a solution
for Rρ > 1, shown in figure 4. It is also interesting to note that, had we taken linear
approximations for the temperature and solute fields across the diffusive layer then
no root would have been found for η when Rρ > 1/τ .

Asymptotically, as τ → 0 with all other parameters of order unity, η remains of
order unity, which implies that the thickness of the diffusive layer at these early
times grows at a rate commensurate with solutal diffusion: in dimensional terms,
h(t) ∼ 2η

√
Dt . These solutions were used to initialize the numerical computations in

cases when h(0) = 0.

3.3. Behaviour at large times – infinite container

As the diffusive interface thickens, the right-hand side of (2.24) diminshes and is
eventually balanced by the convective flux represented by the left-hand side. If the
container is sufficiently large that the temperature and salinity of the mixed regions
do not change, or if external controls are put on the system so as to maintain the
mixed regions at constant values then the following states are reached asymptotically
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Figure 4. The roots of (3.7b) (solid curve) and of (3.14b) (dashed curve) as functions of Rρ ,

with τ = 0.01. Note that (3.14b) has no roots for Rρ < τ−1/2.

for large time. There are two possibilities depending on the value of the buoyancy
ratio Rρ .

The case Rρ < τ−1/2

In this case, analysed by Linden & Shirtcliffe (1978), a steady state can be reached.
The temperature and salinity fields become linear across the diffusive interface, and
equations (2.23) and (2.24) reduce to

0 = −Rρτ
φh

h
+ τ 1/2 θh

h
, (3.8)

(
1 − τ 1/2

)
λ(θh − θ)4/3 = Rρτ

φh

h
− θh

h
. (3.9)

From these, we obtain the values

δθ =
1 − τ 1/2Rρ

1 − τ 1/2
,

(
1−τ 1/2

)
λδθ4/3h = (1−τRρ)−

(
1+τ 1/2

)(
1−τ 1/2Rρ

)
(3.10a, b)

for the dimensionless temperature jump across the boundary layer δθ and the thickness
of the core h. It is clear that such a state can only exist for Rρ < τ−1/2, otherwise δθ

would be negative. Expression (3.10a) is identical to the result obtained by Linden &
Shirtcliffe (1978) and gives

F ∗
T =

λ(τ )

λSP

(
δθ

2

)4/3

=
1

π1/3

(
1 − τ 1/2Rρ

)4/3(
1 − τ 1/2

)1/3
(3.11)

if expression (2.6) is used for λ(τ ). Note that expression (3.10a) for δθ is independent
of the choice of the empirical constant λ(τ ) but the final expression in (3.11) is not.

It has been imagined by many authors that experiments and natural systems evolve
through steady states, such as those described above, as the conditions of the mixed
layers vary. However, this leaves open the question of how the system evolves when
Rρ > τ−1/2 and whether the evolution of the diffusive interface is commensurate with
the evolution of the mixed layers, which would nullify the hypothesis that the system
evolves through quasi-steady states, even for Rρ < τ−1/2. It can be shown that the
steady states are approached exponentially with a decay constant proportional to δθ8/3,
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Figure 5. Evolution with time t of the thickness h of the diffusive core for different values of
Rρ with τ = 0.01. Note that the thickness scales with t1/2 initially but tends to its steady value

exponentially with a time constant that tends to infinity as Rρ tends to τ−1/2 = 10.

which tends to zero rapidly as Rρ tends to τ−1/2 from below. Therefore it becomes
increasingly unlikely that systems can evolve through quasi-steady states as Rρ

approaches τ−1/2. The delay in the approach to steady state as Rρ increases is clearly
seen in figure 5, which shows examples of how the core thickness h evolves in time.

The case Rρ > τ−1/2

In this case, the system runs down until δθ 	 1, at which stage the left-hand side
of (2.23) is negligible — the accumulation of heat and salt at the interface between
the diffusive and mixed regions is negligible and the fluxes across the mid-plane z =0
are of similar magnitude to those into the mixed layers. There is again a similarity
solution at this stage, the temperature and salinity fields being given by (3.3) with
θh ≈ φh ≈ −1. Equations (2.23) and (2.24) become

0 =
Rρ

G(η)
− τ 1/2

G
(
τ 1/2η

) , (3.12)

(
1 − τ 1/2

)
λδθ4/3t1/2 = −Rρτ

1/2η

G(η)
+

τ 1/2η

G
(
τ 1/2η

) , (3.13)

which can be rearranged to give

λδθ4/3t1/2 =
Rρη

G(η)
with

τ 1/2G(η)

G
(
τ 1/2η

) = Rρ. (3.14a, b)

In this regime, δθ ∝ t−3/8, which tends to zero as t → ∞ and justifies our neglect of
the left-hand side of (2.23) as well as the postulates that θh ≈ φh ≈ −1. Note that the
heat and salt fluxes, which are proportional to δθ4/3 ∝ t−1/2, decay with time.

The left-hand side of (3.14b) tends to τ−1/2 as η → 0 + and increases monotonically
to infinity as η → ∞. Therefore, equation (3.14b) has a solution for all values of
Rρ > τ−1/2. This is illustrated in figure 4, which also shows that the value of η in this
long-time asymptotic state is smaller than the value of η obtained initially.
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Figure 6. Self-similar profiles of temperature (long-dashed curve) and salinity (solid curve)
within the diffusive core (bounded by horizontal solid lines) at Rρ = 30, τ = 0.01. The short-
dashed curve shows the linear salinity profile assumed by Newell (1984) to estimate the thick-
ness of the core, shown by horizontal dashed lines.

Asymptotic, self-similar profiles of the temperature and salinity fields when Rρ = 30
are shown in figure 6. It can be seen that, whereas the temperature field is almost linear,
the salinity field is not. In developing an approximate model of the evolution of the
diffusive core, Newell (1984) estimated the thickness of the core based on an assumed
linear salinity gradient, as shown in the figure. This underestimates the thickness of
the core, which leads to an overestimate of the heat flux (see later). It is interesting to
note that the maximum curvature of the salt field occurs inside the diffusive core at
these large values of Rρ , which may have caused the apparent double-boundary-layer
structure visualized by Fernando (1989) using the shadowgraph technique.

3.4. Approximate behaviour at large times — finite container

The solutions found in the previous section for an ‘infinite’ container apply in a
finite container for dimensionless times less than O(Ra1/3), which corresponds to
dimensional times of O(Ra−1/3H 2/κ), i.e. much shorter than the thermal diffusion
time across the mixed layers. For times longer than this, equations (2.17) and (2.18)
come into play, describing the evolution of the temperature and salinity of the mixed
layer. These equations can be combined to show that

dφ

dθ
=

τ 1/2

Rρ

⇒ φ + 1 =
τ 1/2

Rρ

(θ + 1). (3.15)

Because τ 1/2 < 1 and Rρ > 1, this shows that the effective buoyancy ratio between the
mixed layers R∗

ρ ≡ Rρφ/θ increases with time (indicated by the arrows on the numerical
solutions displayed in figure 2), to infinity as θ → 0. Therefore, at sufficiently large
times an isolated system will find itself in the second regime (R∗

ρ > τ−1/2) of the
previous section. The same balances apply in the interfacial conservation equations
(2.23) and (2.24), which now suggest that

τ 1/2G(η)

G
(
τ 1/2η

) = R∗
ρ ≡ Rρφ/θ, λδθ4/3t1/2 = − τ 1/2η

G
(
τ 1/2η

)θ. (3.16a, b)

For large R∗
ρ , η is a slowly varying function of R∗

ρ (it has only logarithmic dependence).
We can construct an approximate solution by treating η as a constant (a slowly varying
parameter of time) and use (3.16b) in equation (2.17) to show that

Ra1/3 dθ

dt
= − τ 1/2η

G
(
τ 1/2η

) θ

t1/2
. (3.17)
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Note that, though η depends only logarithmically on R∗
ρ , R∗

ρ depends exponentially
on time, so the procedure followed in this subsection is not formally self-consistent
and the results obtained are not asymptotic. However, the physical ideas underlying
and exposed by this approximate analysis are the appropriate ones. Equation (3.17)
is readily integrated to give

θ ∼ − exp

[
− 2τ 1/2η

Ra1/3G
(
τ 1/2η

) t1/2

]
. (3.18)

In the limit τ → 0, η remains of order unity, as we have seen, and we can simplify the
expression for the temperature of the mixed layer to

θ ∼ − exp

[
− t1/2

Ra1/3τ 1/2 η

]
. (3.19)

This suggests that the temperatures of the mixed layers become almost equal after
a dimensionless time of O(Ra2/3τ ), which corresponds to a dimensional time of
O(τH 2/κ). The system runs down on a diffusive timescale but with an effective
thermal diffusivity of κ2/D, which is greater than both of the molecular diffusivities.
Note also that, in consequence of the still vigorous convection in the mixed layers, their
mean temperatures are uniform rather than having the curved profiles typical of a
purely diffusing system. In dimensional terms, the long-time decay of the temperature
in the double-diffusive system is given by

θ ∼ θ(t) = − exp

[
− (κ2t/D)1/2

η(R∗
ρ) H

]
, (3.20)

whereas in a purely diffusing system it is given by

θ ∼ θ(z, t) = − sin
(π

2

z

H

)
exp

[
−π2κt

4H 2

]
. (3.21)

Equation (3.18) can be combined with equations (3.15) and (3.16) to show that

F ∗
T ≡ λ(τ )

λSP

(
δθ

−2θ

)4/3

=

[
λSP

G2
(
τ 1/2η

)
τη2

H ln

(
R∗

ρ − τ 1/2

Rρ − τ 1/2

)]−1 [
βg�S(−φ)

κν

]−1/3

(R∗
ρ)

1/3

∼
[
λSP 4η2Hτ ln

(
R∗

ρ

Rρ

)]−1 [
βg�S(−φ)

κν

]−1/3

(R∗
ρ)

1/3 as τ → 0. (3.22)

This expression is equivalent to equation (3.3) of Newell (1984) apart from the
numerical factor 4η2 in place of π, which results from the different estimations of the
core thickness.†

This approximate solution and that of Newell (1984) are shown in figure 2. As
suggested by figure 6, the numerically calculated heat flux is somewhat lower than
that predicted by Newell owing to the fact that a linear salt profile underestimates
the thickness of the core. Note that both Newell’s solution and the solution given

† The factor π3/2 in expression (3.3) of Newell (1984) should be replaced by π. Newell estimates
the core layer thickness as 2

√
πDt , which is equivalent to taking η =

√
π/2.
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Figure 7. The circles show data from Run 2 of Stamp et al. (1998) using aqueous solutions
of salt and sugar. The solid curve shows the predictions of the present model with λ(τ ) = 0.062
given by equation (2.6). The short-dashed curve is a prediction made using λ(τ ) = 0.081. The
long-dashed curve is the theoretical steady state for fixed R∗

ρ (Linden & Shirtcliffe 1978). Data
kindly supplied by G. O. Hughes.

in (3.22) begin to increase at large values of R∗
ρ , though the start of the increase is

delayed in the latter. The numerical solution (which has been extended much further
than shown) appears to decay monotonically.

4. Comparisons with experiments
4.1. A run-down experiment using salt–sugar

The model presented so far assumes initial conditions corresponding to two uniform
superposed fluid layers with a sharp interface between them of zero thickness. It is
impossible to set up such an initial condition in the laboratory but a close approxi-
mation to it can be achieved using two slowly diffusing agents, such as salt and
sugar. A second advantage of using two solutes rather than heat and a solute is
that an experimental tank is impermeable to the solutes but is difficult to insulate
thermally. Such experiments were performed by Shirtcliffe (1973) and more recently
by Stamp et al. (1998). All the experiments reported by these authors were for a
small range of buoyancy ratios, 1 <Rρ < 2, that did not extend far beyond the critical
value Rρ = τ−1/2 ≈ 1.74. Stamp et al. (1998), after correcting an error of scaling made
by Shirtcliffe (1973), have shown that the two sets of experimental studies produce
similar results for the fluxes. In what follows, I have made a comparison with data
from Stamp et al. (1998), to which I was given direct access, but the comparisons
apply equally to the results of Shirtcliffe (1973).

Data from Run 2 of Stamp et al. (1998) are shown in figure 7, where they are
compared with predictions of the present model. The solid curve shows a prediction
made using the value of λ(τ ) = 0.062 given by equation (2.6) with τ = 0.33. The other
parameter values used in the simulation were Rρ = 1.15 and Ra = 2.3 × 1011. The
physical parameter values used in estimating the Rayleigh number were α�T =0.03,
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Figure 8. Evolution of the scaled heat flux F ∗
T and the buoyancy ratio Rρ parameterized by

time, starting with Rρ = 50 in a system heated from below. After some oscillations, the system
settles to a point on the branch of steady states predicted by Linden & Shirtcliffe (1978),
shown with a dashed curve. The arrow shows the direction in which time is evolving.

H = 12 cm, κ = 1.1 × 10−5 cm2 s−1 and ν = 1.0 × 10−2 cm2 s−1, where here α�T repre-
sents the relative density contrast due to salt and κ is the diffusivity of salt. A slightly
better fit to the data can be achieved using a higher value for λ. For example, the
short-dashed curve in figure 7 shows a prediction made using λ= 0.081. The higher
fluxes indicated by a larger value of λ may be a consequence of interfacial waves
(Turner & Chen 1974; Stamp et al. 1998). Since the structure and amplitude of the
waves vary with Rρ , it is likely that any parametrization of λ should depend on Rρ

as well as τ .
There is some scatter in the data but nevertheless an indication that the data lie

on or above the steady-state curve (long-dashed curve) and tend away from it at
higher values of Rρ , in accord with the theoretical predictions. In the narrow range
of buoyancy ratio explored in salt–sugar systems, the scaled heat flux F ∗

T does not
deviate very far from the steady-state value determined by Linden & Shirtcliffe (1978).
As we have seen, much larger deviations are to be expected at larger values of Rρ .

4.2. A thermal run-down experiment

Newell (1984) performed a number of run-down experiments at high values of Rρ

using heat and salt, though none of them began from the ideal initial state that has
been assumed in the paper so far. His experiments were set up by superposing two
layers of different salinities but identical temperatures then heating the lower layer
rapidly until the desired ‘initial’ buoyancy ratio Rρ was reached. The heating was then
turned off and the subsequent evolution of the system monitored. Though Newell
records the measured interface thickness and the temperatures and salinities of the
mixed layers at the start of each experiment, these are insufficient to initialize the
model equations since the internal structure of the core depends on its history during
set up.

An example of such a history is shown in figure 8. Rather than starting with Rρ = ∞,
as would be the case at the beginning of Newell’s set-up procedure, the simulation
begins with ideal superposed layers at Rρ =50 and equation (2.17) is modified by the
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Figure 9. The circles show the evolutionary path of experiment 5 of Newell (1984). The solid
curve and the short-dashed curve show the predictions of the present model respectively with
and without account being taken of heat losses to the laboratory. The long-dashed curve
(L&S) shows the steady-state prediction of Linden & Shirtcliffe (1978), while the dot-dashed
curve (N) shows the prediction of the approximate model developed by Newell (1984). Data
kindly supplied by T. A.Newell from the Master’s thesis of Paul von Driska (1982).

addition of a heating term on the right-hand side. The simulation eventually tends
towards the steady state determined by Linden & Shirtcliffe (1978), when the applied
heat flux exactly balances the heat transfer across the diffusive interface. It seems that
Newell began his experiments before such a steady state was reached, below and to
the left of Linden & Shirtcliffe’s curve. However, the steady state gives a precise initial
condition and is therefore used below in the numerical simulation of the experiment.

The data in figure 9 show the evolution of experiment 5 of Newell (1984) in com-
parison with the models of Linden & Shirtcliffe (1978), Newell (1984) and the
prediction of the present model. Parameter values used in the present simulation were
τ = 0.01, Ra = 1.1 × 1011 and Rρ = 8.5. The values used in estimating the Rayleigh
number were α =3 × 10−4 K−1, g = 980 cm s−2, �T =4.9 K, H = 120 cm, κ = 1.46 ×
10−3 cm2 s−1 and ν = 0.8 × 10−2 cm2 s−1. Using these values of τ and Rρ , the tempera-
ture and salinity fields in the core were initialized with linear profiles given the values
of δθ and h from (3.8). The value of λ(τ ) = 0.13 used to produce the short-dashed
curve is that given by equation (2.6).

We see that the predicted evolution drifts away from the experimental data up to
a factor of almost 2 in the value of F ∗

T . A more significant discrepancy is that the
evolutionary path indicated by the short-dashed curve takes less than 4 days to reach
R∗

ρ = 30, whereas the experiment took about 13 days. This is evident from figure 10,
which shows the thickness of the diffusive core as a function of time.

However, whereas the model assumes a perfectly insulated system, there was some
heat lost to the environment during the experiment. This can be seen in figure 11,
which shows the average temperature TA in the experiment as a function of time. The
data in figure 11 are represented well by an exponential function of the form

TA = T1 + T2 exp(−m∗t),
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Figure 10. The circles show the core thickness measured in experiment 5 of Newell (1985). The
solid curve and the short-dashed curve show the predictions of the present model respectively
with and without account being taken of heat losses to the laboratory. Data kindly supplied
by T. A. Newell from the Master’s thesis of Paul von Driska (1982).
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Figure 11. The circles show the average temperature TA in experiment 5 of Newell (1984) as
a function of time. The curve shows the best fit to a curve of exponential form. Data kindly
supplied by T. A. Newell from the Master’s thesis of Paul von Driska (1982).

where

T1 ≈ 23.2◦C, T2 ≈ 19.1◦C and m∗ = 1.12 × 10−6 s−1,

as shown. If we assume that a fraction f of the heat lost to the environment is lost
from the upper mixed layer and a fraction 1 − f is lost from the lower mixed layer
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then equation (2.17) is modified by an additional term on the left-hand side to become

(
Ra1/3 − h

)dθ

dt
= λ(θh − θ)4/3 +

2T2

�T
(1 − 2f )Ra1/3 me−mt , (4.1)

where m =m∗Ra−2/3H 2/κ . A value of f = 0.56 was used to produce the solid curves
in figures 9 and 10, where it can be seen that much better agreement between theory
and experiment can be achieved by taking such heat losses into account. In particular,
the evolutionary path in (R∗

ρ, F
∗
T )-space is now predicted to take about 13 days, in

agreement with the experiment. It is not unreasonable that slightly more heat was lost
from the upper layer, which had less insulation on its upper surface than the base.
The fact that the prediction of core thickness is a little higher than that measured
may be a consequence of the initial conditions used or of the way in which the core
thickness was measured by extrapolating the approximately linear temperature field
at the centre of the core (see figure 6).

The quantitative comparisons should be treated with a little caution because some
discrepancies may also be attributable to the variations of the physical parameters
with temperature, not accounted for in the theoretical prediction. For example, the
variations of the thermal expansion coefficient α and the kinematic viscosity ν cause
the Rayleigh number Ra to vary by a factor of almost 3 and Ra1/3 to vary by 40%
over the temperature range of the experiment (between 20◦C and 40◦C). However,
the comparisons shown seem to indicate that good predictions should be possible if
careful attention is paid to parameter values and a full heat budget.

4.3. Forced experiments

Turner (1965) performed a number of experiments in which a two-layer system,
initially isothermal with a less salty layer above a saltier one, were forced with a
constant heat flux through the lower boundary. The temperatures and salinities of
the two layers were measured as they evolved in time, and from these measurements
the heat and salt fluxes across the interface between the two layers were determined.
The model proposed by Linden & Shirtcliffe (1978) gave predictions that seemed to
give the wrong trend in comparison with the data, as shown by the dashed curve
in figure 12, casting some doubt on the structure of their model and the physical
mechanisms it embodied. However, as shown by the solid curve in figure 12, the
steady states predicted by the present model, which has the same basic structure
as Linden & Shirtcliffe’s model, fit Turner’s data well in the range R∗

ρ > 3 if the
constant of proportionality in the four-thirds law applied to the thermal boundary
layers bounding the diffusive core is taken to be λ(τ ) = 0.075. The details of cyclic
eruption of the thermal boundary layers employed by Linden & Shirtcliffe serve
only to provide an estimate of λ(τ ), which, as suggested in § 2, should be treated
as an empirical constant. I therefore believe that a different interpretation of the
experiments is possible as follows.

The heating applied during Turner’s (1965) experiments would have driven
turbulent, convective motions in the lower layer. At the higher values of R∗

ρ , those
motions may have been insufficient to disrupt the structure of the diffusive core,
which would have therefore evolved as described in this paper. Simulations such as
that shown in figure 8, using heating rates equal to those applied by Turner (1965),
predict that the steady-state curve is reached after only a few minutes (real time) and
the system subsequently evolves quasi-steadily along that curve. At lower values of
the buoyancy ratio R∗

ρ (below about 3 in these particular experiments), the turbulence
in the lower layer driven by the heating elements may have actively eroded the lower
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Figure 12. The data points show the scaled heat fluxes measured by Turner (1965), with the
different symbols corresponding to the different heat fluxes applied to the lower layer. The
solid curve shows the steady-state result of the present model when λ(τ ) = 0.075, while the
dashed curve shows the result of Linden & Shirtcliffe (1978), which has λ(τ ) ≈ 0.13 when
τ = 0.01.

edge of the core or generated interfacial waves or both. Either of those mechanisms
would enhance the heat transfer across the core relative to that predicted by the
present model and might explain the deviation between data and theory shown in
figure 12. The fact that the salt/heat flux ratio in Turner’s experiments remained
constant, and approximately equal to τ 1/2 for R∗

ρ down to about 2, suggests that in
the range 2 <R∗

ρ < 3 in Turner’s experiments, the core was not totally disrupted, and
the physical mechanisms described in § 3 were dominant in controlling the heat and
salt transport between the core and the upper mixed layer. Finally, when R∗

ρ < 2 in
Turner’s experiments, the turbulence in the lower layer may have been sufficient to
disrupt the core entirely and cause direct turbulent entrainment of the upper layer, as
suggested by Linden (1974). If these pictures are correct then the transitions between
the different sorts of behaviour would depend critically on the strength and nature of
any convection externally driven in either of the mixed layers. That this may be the
case is suggested by the very large scatter in the data obtained by Turner (1965) for
R∗

ρ < 3.

5. Conclusions
A new, time-dependent model of double-diffusive interfaces has been developed

which codifies many existing ideas about their structure. The model and its solutions
give a clear physical picture of the dynamics of double-diffusive interfaces and quantify
their evolution and the fluxes of heat and salt transported across them. Briefly, heat
diffused across the interface drives vigorous thermal convection in the mixed layers
either side of it, while the mismatch between the rates at which salt is diffused across it
and is carried away by the thermal convective elements determines the evolution of its
thickness. The new model reproduces in essence the steady-state model of Linden &
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Shirtcliffe (1978) at low buoyancy ratios and the approximate time-dependent model
of Newell (1984) for high buoyancy ratios.

Predictions of the model have been compared with three previous experimental
studies: a run-down experiment with salt and sugar (Stamp et al. 1998); a run-down
experiment with heat and salt (Newell, 1984); and a forced experiment in which
a two-layer, salt-stratified system was heated from below (Turner 1965). Although
precise comparisons are hampered by the lack of knowledge of the initial conditions
and because variations of physical properties with temperature were not taken into
account, good agreement between theory and exeriment was obtained in all cases.

When the buoyancy ratio Rρ < τ−1/2 and the mixed layers have constant properties
then a steady state is possible in which the heat flux across the interface is

FT = λ(τ )

[
1 − τ 1/2Rρ

2
(
1 − τ 1/2

)
]4/3

k
(αg

κν

)1/3

�T 4/3,

where λ(τ ) is an empirical function of τ . Comparisons made here with data from
Stamp et al. (1998) suggest that λ(τ ) ≈ 0.081 for the salt–sugar system, which has
τ ≈ 0.33, while comparisons with data from Turner (1965) suggest that λ(τ ) ≈ 0.075
for the heat–salt system, which has τ ≈ 0.01. However, it may be that λ is additionally
a function of the buoyancy ratio Rρ , particularly as it affects the buoyancy frequency
relevant to interfacial waves, which may enhance heat transfer across the interface.
Evolution towards the steady states is rapid if Rρ is not too close to τ−1/2, in which
case the layered double-diffusive system can be considered as evolving through quasi-
steady states even in situations in which the properties of the mixed layers are not
held constant.

Extrapolations of the empirical relations determined for the heat flux by Huppert
(1971) and by Marmorino & Caldwell (1976) by fitting results at low Rρ give
extremely poor results at high values of Rρ (Newell 1984), where the present model
works particularly well. The present model also provides a framework against which to
discuss and analyse other processes that might operate in forced systems, particularly
at low Rρ . For example, the results presented in this paper give support to the idea
(Linden 1974) that the interface is modified and perhaps completely disrupted by
externally driven turbulence when such is present, for example in the experiments of
Turner (1965) and of Marmorino & Caldwell (1976). If this is the case then the heat
and salt fluxes may depend on both the strength and the structure of the turbulence
in the mixed layers, which calls into question any simple parameterization of the
fluxes that does not take explicit account of such turbulence.

The major conclusion of this paper is that double-diffusive interfaces are intrinsi-
cally time-dependent. In consequence, there is not a single mathematical expression
that can be obtained for the heat flux across a double-diffusive interface, and fluxes
can depend significantly on the initial conditions and the history of evolution. On
the other hand, the model proposed in this paper is readily implemented numerically
and runs extremely fast on a modern desk-top computer. The model provides a basis
for future investigations of layered double-diffusive systems and could be extended
to account for other processes (e.g. internal heating or shear) occurring in the mixed
layers.

This work was begun while on sabbatical at the Applied Physics Laboratory of
the University of Washington, where I was generously hosted by J. S.Wettlaufer,
with whom I had many stimulating discussions. I have benefitted from many helpful
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discussions with G. O.Hughes, H. E.Huppert, D. Leppinen, P. F. Linden, J. S. Turner
and M.Ungarish. I am extremely grateful to G.O.Hughes and T.A.Newell for supply-
ing data from their experiments.
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